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Polymerized membranes with quenched disorder in the internal metric are studied in the mean-field approxi-
mation. From the stability analysis of the replica-symmetric solution, we find a mixed~flat-glass! phase. This
phase is the frozen phase with a nonzero average tangent field but with broken replica symmetry. This phase
may correspond to the observed wrinkled phase of a partially polymerized membrane.
@S1063-651X~96!03708-7#

PACS number~s!: 87.22.Bt, 64.70.Pf

Polymerized membranes, which are two-dimensional gen-
eralizations of linear polymer chains@1,2#, have been studied
intensively during the last few years. Unlike linear polymers,
polymerized membranes with fixed connectivity and nonzero
shear modulus are predicted to exhibit both the high tem-
perature crumpled phase and the low temp temperature flat
phase. The crumpled phase has been observed in simulations
on non-self-avoiding phantom membranes@3–5# and has
also been recently seen in Monte Carlo simulations of self-
avoiding tethered surfaces modeled by impenetrable flexible
plaquette @6#. The nonzero temperature flat phase is de-
scribed by an anomalous elasticity with wave vector depen-
dent elastic moduli that vanish and a bending rigidity that
diverges at a long wavelength.

Recent studies on the polymerized membranes are con-
centrated on the effects of internal disorder. Recently Mutz,
Bensimon, and Breinne observed that upon cooling partially
polymerized vesicles undergo a spontaneous transition to a
wrinkled rigid structure@7#. It was suggested that this tran-
sition could be a membrane equivalent of the spin-glass tran-
sition. Motivated by this experiment, there have been inten-
sive theoretical investigations about the effects of disorder.

Recently Nelson and Radzihovsky@8# considered the ef-
fects of quenched random impurities leading to random dis-
order in the preferred metric tensor. They found that the flat
phase remains stable with respect to such randomness at
T.0 but becomes unstable atT50 because of the disorder-
induced softening of the bending rigidity. Morse, Lubensky,
and Grest found@9# that using thee expansion the presence
of impurity-induced random curvature leads to a disordered
flat phase stable atT50 but unstable to temperature. Simul-
taneously with Morse, Lubensky, and Grest@9#, Le Doussal
and Radzihovsky found several flat-glass phases stable at
T.0 using the self-consistent calculation@10#. Radzihovsky
and Le Doussal@11# predicted that the flat phase atT.0
becomes unstable toward a crumpled glass phase similar to a
spin glass at large enough~nonperturbative! disorder
strength. Here a crumpled spin-glass phase is characterized
by a vanishing average tangent field@^]ar i&# but with a non-
zero Edwards-Anderson spin-glass order parameter
@^]ar i&^]br j&#. By investigating the effects of long-range
disorder on the flat phase, Attal, Chaieb, and Bensimon@12#
studied a mean-field model of a membrane with quenched
random curvature. They find the replica-symmetry-breaking

~RSB! solution and the instability line separating a flat phase
from a new mixed phase with broken ergodicity.

In this paper, we investigate the possibility that the poly-
merized membrane with quenched disorder can exhibit a
flat-glassy phase characterized by a nonzero average tangent
field @^]ar i&# and a nonzero spin-glass order parameter
@^]ar i&^]br j&# with broken replica symmetry within the ap-
proximation of the mean-field theory.

We use the disordered Hamiltonian with the quenched
random disorder in the preferred metric, as was proposed in
Refs.@8# and@10#. The probability of a particular configura-
tion for fixed disorder configuration is proportional to
exp@2H(rW)/T# where

H5E dDx( 12ku¹2rW~xW !u21 1
4m$]arW•]brW

2dab@112dc~xW !#%21 1
8 l$]arW•]arW

2D@112dc~xW !#%2). ~1!

In the above, the surface configuration is described by
rW(xW ), wherexW is aD-dimensional internal coordinate label-
ing the membrane monomers, andrW describes the embedding
in ad-dimensional space. Herek is the bending rigidity, and
m andl are the elastic Lame coefficients of the membrane.
limit We takedc(x) to be a zero mean Gaussian quenched
random field with probability distribution P@dc(x)#
}exp[21/2s *dDxd2c(x)]. Then the field dc(x) describes
random dilutions and compressions in the local preferred
metric, darW•dbrW5dab@112dc(x)#, due to disorder. The
partition function for each configuration of disorder is given
by

Z5E DrWexpS 2
1

T
H D . ~2!

Then the disorder averaged free energy is

F52T@ lnZ#, ~3!

where the square bracket@ # refers to the average over the
quenched disorderdc with the weightP@dc#.

In what follows, we use the replica formalism to treat the
effect of disorder. The disorder averaged free energyF is
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obtained from the replicated, disorder averaged partition
function@Zn# by the analytic continuation of all the results to
n→0, making use of the identity

F52T@ lnZ#52T lim
n→0

ln@Zn#21

n
. ~4!

Performing the average ofZn, we obtain

@Zn#5E )
a51

n

DrWaexpH 2bE dDx(
a51

n

@ 1
2ku¹2rW~xW !u2

1 1
4m~]arWa•]brWa2dab!21 1

8l~]arWa•]arWa2D !2#

1 1
8 b2sE dDx (

abab
~]arWa•]arWa!~]brWb•]brWb!J ,

~5!

where the redefinition (lD12m)2s→s is made and
b51/T. In the above we ignoredO(n2) terms which will
vanish in the limitn→0. Following the derivation of Radzi-
hovsky and Le Doussal@11#, we introduce auxiliary fields
xab
a andQab i j

ab and perform the Hubbard transformations on
the quartic terms of the disorder averaged Hamiltonian. We
obtain

@Zn#5E DrWaDxab
a DQabij

ab expH 2b (
a51

n E dDxF12 ku¹2rW~xW !u2

2
a

2
~xab

a !22
g

2
~xaa

a !21
1

2
xab
a ~]arWa•]brWa2dab!

2
1

4
bsD~]arWa•]arWa!G

1E dDx(
aÞb

F2
1

8
b2s~Qab i j

ab !2

1
1

4
b2sQab i j

ab ]ar a
i ]br b

j G J , ~6!

wherea51/2m andg5 (l2bs)/(2m@2m1D(l2bs)#).
The free energy can now be computed in the following

way. We splitrWa(xW ) into its average and fluctuations

rWa~xW !5rW01drWa~xW !, ~7!

where rW05^rWa&, drW5rWa2rW0 and we perform the Gaussian
integration overdrWa . Within the approximation of the mean-
field theory, we now perform the remaining integrals over
xab
a andQab i j

ab using the saddle point method, which is valid
for d@D@1. We assume the saddle point solution has the
following form:

xab
a 5xadab , ~8!

Qab i j
ab 5qabdabd i j ~12dab!, ~9!

rW05zxaeWa , ~10!

whereeWa is a unit vector.
Now we find

Fn

LD
5H D2 ~z221!(

a
xa2

D

2
~a1gD !(

a
xa
2

2
1

4T
sD2z2n1G0~q!J

s.p.

~11!

where the notation s.p. means that one has to evaluate the
expression within the bracket for saddle point values with
respect toxa , z, andqab and

G0~q!5
1

8T
sDS (

aÞb
qab
2 d22(

aÞb
qabz

2D
1
1

2
TdE dDk

~2p!D
lndetq. ~12!

In the above the matrix element ofq are defined as

~q!ab5qab ~aÞb!,

~q!aa5

kk21xa2
sD

2T

2
s

2T

. ~13!

The saddle point equation forqab derived fromG0 reads, in
then→0 limit @13#

1

4T
sD~qab

2 d22qabz
2!1

Td

2 E dDk

~2p!D
~q21!ab50.

~14!

Following Radzihovsky and Le Doussal, we use a a rep-
lica symmetry~RS! ansatz

qab5q~12dab!, xa5x. ~15!

Then the RS saddle point equations become

z2

d
5qS 12

s

2DE dDk

~2p!D
1

S kk21x2
sD

2T
1

sq

2TD 2D ,
~16!

12z212x~a1gD !5
Td

2DE dDk

~2p!D S 2

kk21x2
sD

2T
1

sq

2T

1
qs/T

S kk21x2
sD

2T
1

sq

2TD 2D , ~17!

DzS x1
sq

2T
2

sD

2T D50. ~18!

By analyzing the saddle point equations, it was shown that
there are three phases as follows@10#:
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~1! The crumpled phase described byz50, and q50
which corresponds to region 4 of Fig. 1.

~2! The flat phase described byqÞ0 and zÞ0, which
corresponds to regions 2 and 3 of Fig. 1.

~3! The crumpled spin-glass phase described byqÞ0 and
z50, which corresponds to region 1 of Fig. 1.

The transition from flat to the crumpled spin-glass phase
occurs ats5sc where

sc
215

1

2DE dDk

~2p!D
1

k2k4
. ~19!

Also the transition from the flat to the crumpled phase occurs
at T5Tc(s) where

Tc~s!5 1
2Tc0~11A114sD~a1gD !Tc0

22! ~20!

with

Tc05
d

DE dDk

~2p!D
1

kk2
. ~21!

We note that ourTc(s) differs from that of Ref.@10#.
We now investigate the stability of the above RS solution

to find a mixed phase with a broken replica symmetry. To
examine the question that Eqs.~16!–~18! give a maximum of
the free energy expression Eq.~11!, we write

xa5x1dqaa , qab5q1dqab ~aÞb! ~22!

wherex andq are the RS saddle point values described by
Eqs. ~15!–~18!. Then the second order variation of the free
energy with respect todqaa anddqab gives

2nd2f52D~a1gD !(
a

~dqaa!
21

1

4T
sDd(

aÞb
~dqab!

2

2
d

2bE dDk

~2p!D
Tr~q21dq…2 ~23!

dqaa50 by construction. Now we find

~q21!ab5udab1v, ~24!

where

u5
1

qaa2q
, v5

2q

~qaa
2 2q!2.

~25!

The matrixG associated with the above quadratic form has
seven different types of matrix elements@14#. The coeffi-
cients of thedqaa alone are given by

Gaa5
]2f

]~dqaa!]~dqaa!

52~a1gD !2
d

2b S 2
bs

2 D 22

3E dDk

~2p!D
~u212uv1v2!5A, ~26!

Gab5
]2f

]~dqbb!]~dqaa!
52

d

2b S 2
bs

2 D 22E dDk

~2p!D
v2

5B. ~27!

The coefficients of thedqab(aÞb) alone have the forms

G~ab!~ab!5
]2f

]~dqab!]~dqab!

5
1

4
bsDd2

d

2bE dDk

~2p!D
~u212uv1v2!

5P, ~28!

G~ab!~ac!5
]2f

]~dqab!]~dqac!
52

d

2bE dDk

~2p!D
~v21uv !5Q,

~29!

G~ab!~cd!5
]2f

]~dqab!]~dqcd!
52

d

2bE dDk

~2p!D
v2

5R. ~30!

The coefficients of the cross terms have the forms

Ga~ab!5
]2f

]~dqaa!]~dqab!

52
d

2b S 2
bs

2 D 21E dDk

~2p!D
~2uv1v2!

5C, ~31!

Ga~bc!5
]2f

]~dqaa!]~dqbc!
52

d

2b S 2
bs

2 D 21E dDk

~2p!D
v2

5D. ~32!

There are at most five distinct eigenvalues of the matrix.
~1! The first is

l15P22Q1R ~33!

and corresponds to the eigenvector for which

FIG. 1. Mean-field phase diagram forD.4.
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(
b

dqab50 for all a. ~34!

~2! The second and the third are

l265 1
2 @A1~n21!B1P12~n22!Q1 1

2 ~n22!~n23!R#

6 1
2 $@A1~n21!B2P22~n22!Q

2 1
2 ~n22!~n23!R#212~n21!

3@2C1~n22!D#2%1/2, ~35!

corresponding to the eigenvectors

(
ab

dqab50, but (
b

dqabÞ0. ~36!

~3! Finally the fourth and the fifth are

l465 1
2 @A2B1P1~n24!Q2~n23!R#

6 1
2 $@A2B2P2~n24!Q1~n23!R#2

14~n22!~C2D !2%1/2 ~37!

and correspond to eigenvectors such that(abdqabÞ0. These
five eigenvalues are distinct for generaln, but for n50, Eq.
~35! and Eq.~37! coincide. Hence there are three distinct
eigenvalues in the limitn→0. We find that the eigenvalue
l1 is positive in the flat phase and the crumpled phase while
it is zero in the crumpled spin-glass phase. For the eigen-
valuel26 , we find thatl21 remains positive in all regions
but l22 changes sign from positive to negative asT de-
creases in the flat phase. In Fig. 1, the line separating flat
regions 2 and 3 into two regions is the Almeida-Thouless
instability line in whichl22 changes the sign. The Almeida-

Thouless instability line signals the transition from the RS
flat phase to the frozen phase with a nonzero average tangent
vector, but with broken replica symmetry. We call this mixed
phase a flat-glass phase.

Nears5sc , T5Tc(s,c), the transition is described by
the line

Tc2T}A~sc2s!. ~38!

Also near T50 in the flat phase, the instability line
equivalent to the Almeida-Thouless line is described by

T}s2, ~39!

which implies that the RS flat phase is unstable atT50 to
infinitesimal disorder. Morse, Lubensky, and Grest@9# and
Le Doussal and Radzihovsky@10# also found that flat-glass
phase atT50, respectively, using the method of thee ex-
pansion and the self-consistent calculation in the presence of
the extrinsic curvature disorder. Nelson and Radzihovsky@8#
also predict that the flat phase becomes unstable atT50.
The instability of the flat phase atT50 is also predicted by
Attal, Chaieb, and Bensimon@12#.

To conclude, we consider the polymerized membrane
with quenched disorder in the preferred metric. Via the sta-
bility analysis of the mean-field RS solution, we find a new
mixed phase called the flat-glass phase. This phase is char-
acterized by frozen local tangents with broken replica sym-
metry. The flat-glass phase found in this paper may also
correspond to the observed wrinkled phase of partially poly-
merized membrane.
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