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Glass phase of randomly polymerized membranes
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Polymerized membranes with quenched disorder in the internal metric are studied in the mean-field approxi-
mation. From the stability analysis of the replica-symmetric solution, we find a nfflaehlasg phase. This
phase is the frozen phase with a nonzero average tangent field but with broken replica symmetry. This phase
may correspond to the observed wrinkled phase of a partially polymerized membrane.
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Polymerized membranes, which are two-dimensional gen¢RSB) solution and the instability line separating a flat phase
eralizations of linear polymer chaif,2], have been studied from a new mixed phase with broken ergodicity.
intensively during the last few years. Unlike linear polymers, In this paper, we investigate the possibility that the poly-
polymerized membranes with fixed connectivity and nonzerdnerized membrane with quenched disorder can exhibit a
shear modulus are predicted to exhibit both the high temflat-glassy phase characterized by a nonzero average tangent
perature crumpled phase and the low temp temperature fifield [(d.r;)] and a nonzero spin-glass order parameter
phase. The crumpled phase has been observed in simulatioH/«"i){4r )] with broken replica symmetry within the ap-
on non-self-avoiding phantom membrankg-5] and has Proximation of the mean-field theory. _
also been recently seen in Monte Carlo simulations of self- We use the disordered Hamiltonian with the quenched
avoiding tethered surfaces modeled by impenetrable flexiplg2ndom disorder in the preferred metric, as was proposed in

plaquette[6]. The nonzero temperature flat phase is de_Refs.[8] and[10]. The probability of a particular configura-

scribed by an anomalous elasticity with wave vector depent-Ion for eﬂxed disorder configuration is proportional to
dent elastic moduli that vanish and a bending rigidity thateXH—H(r)/T] where

diverges at a long wavelength.

Recent studies on the polymerized membranes are con- H:f dPx(3 k| V2 (X) |2+ {daf - 07
centrated on the effects of internal disorder. Recently Mutz,
Ben3|m9n, and B_>re|nne observed that upon cooling .p_artlally _ 5aﬁ[l+250(>2)]}2+ %)\{aa;.aa;
polymerized vesicles undergo a spontaneous transition to a
wrinkled rigid structurd7]. It was suggested that this tran- —D[1+28c(X)]}?). (1)

sition could be a membrane equivalent of the spin-glass tran-
sition. Motivated by this experiment, there have been intenin the above, the surface configuration is described by
sive theoretical investigations about the effects of disorder.r(x), wherex is a D-dimensional internal coordinate label-

Recently Nelson and Radzihovsk§] considered the ef- jhg the membrane monomers, andescribes the embedding
fects of quenched random impurities leading to random disin 5 d-dimensional space. Hereis the bending rigidity, and
order in the preferred metric tensor. They found that the ﬂalﬁ and\ are the elastic Lame coefficients of the membrane.
phase remains stable with respect to such randomness |ghit We take 5c(x) to be a zero mean Gaussian quenched
T>0 but becomes unstable &0 because of the disorder- random field with probability distribution P[ 8c(x)]
induced softening of the bending rigidity. Morse, Lubensky,«exp[— 1/20 fd°xs°c(x)]. Then the field 5c(x) describes
and Grest found9] that using thee expansion the presence random dilutions and compressions in the local preferred
of impurity-induced random curvature leads to a d'sordere%etric, S.F- 5BF: 8.5[1+25¢(x)], due to disorder. The

flat phase stable §t=0 but unstable to temperature. Simul- o iion function for each configuration of disorder is given
taneously with Morse, Lubensky, and Grég}, Le Doussal |,

and Radzihovsky found several flat-glass phases stable ar/

T>0 using the self-consistent calculatipt0]. Radzihovsky . 1

and Le Doussal11] predicted that the flat phase &t-0 Z:f Drexp{ - TH)'
becomes unstable toward a crumpled glass phase similar to a

spin glass at large enouglinonperturbative disorder  Then the disorder averaged free energy is
strength. Here a crumpled spin-glass phase is characterized

by a vanishing average tangent fi¢ld,r;)] but with a non- F=-T[InZ], 3)
zero Edwards-Anderson spin-glass order parameter

[(dari){dprj)]. By investigating the effects of long-range where the square brackgi refers to the average over the
disorder on the flat phase, Attal, Chaieb, and Bensifd@h  quenched disordesc with the weightP[ dc].

studied a mean-field model of a membrane with quenched In what follows, we use the replica formalism to treat the
random curvature. They find the replica-symmetry-breakingeffect of disorder. The disorder averaged free endfgis
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obtained from the replicated, disorder averaged partitioRyheree,, is a unit vector.

function[ Z"] by the analytic continuation of all the resultsto  Now we find

n—0, making use of the identity

Fn D D

In[z"]—-1 =1 5 (=D xam 5 (@t YD) X5

F— —T[InZ]= - Thim 231 (4) L° | 2 w02 = e
n—0 n
Performing the average &", we obtain AT a7 oD% n+GO(q)] (1)
s.p.
n n
n— > _ D 1 w2732 where the notation s.p. means that one has to evaluate the
(27 aH Draexp{ ’BJ d Xa; (2l V50| expression within the bracket for saddle point values with

. R . ) . . respect toy,, ¢, andq,, and
+ Zﬂ(aara' aﬁra_ 5aﬁ)2+ §)\(&ara' Jola— D)Z]

Lo 5 . . Go(q) :—UD(E qapd— 22 Qab§)
+ §ﬁ O-f d X;ab (aara'aara)(aﬁrb'ﬁﬂrb) )

1 dPk
(5) + ETdJ (ZT)DIndeq (12

where the redefinition N\D+2u)?0c—o is made and
B=1/T. In the above we ignore®(n?) terms which will

vanish in the limitn— 0. Following the derivation of Radzi-
hovsky and Le Doussdlll], we introduce auxiliary fields

In the above the matrix element gfare defined as

(Dab=0ap (a#b),

Xap andQ";‘,';;ij and perform the Hubbard transformations on oD
the quartic terms of the disorder averaged Hamiltonian. We kk2+ xa— >T
obtain (Daa=—— (13

2T

n
1 -
[Zn]:f Dr, DXaBDQaB,Jexp{ —/821 f dPx §K|V2r(X)|2
& The saddle point equation fay,,, derived fromG, reads, in
then—0 limit [13]

o 0% 1 - -
— 5 (Xep)® = 5 (Xea)*+ 5 Xap(9aTa 9T a= Sap)
1 ) ,  Tdr d’k
27 P (dapd—29and) + 7J W(q )ab=0.

1 - -
— 2B0D(9aT o aara)} (14
Following Radzihovsky and Le Doussal, weeus a rep-
+j dDXE __Bz Q Eu)2 lica symmetryRS) ansatz
a*b “
Qab=0d(1—=dap), Xa=X- (15
+7 BZUQa,g.,'? Fadghh ] (6)  Then the RS saddle point equations become
2 D
wherea=1/24 and y= (A — Bo)/(2u[ 22+ D (A — Bo)]). gl -2 2L 1 .
The free energy can now be computed in the following  d 2DJ (2m) ( 2, £+ aq
way. We splitr,(X) into its average and fluctuations 2T 2T s
16
Fa(X)=ro+ 8rx(X), 7
2(X)=To+ 67 4(X) (7 o Td o ,
wherer,=(r,), r=r,—ro and we perform the Gaussian Ctaxlaty (2m)° 2 _£+o_q
integration oversr, . Within the approximation of the mean- X T T 2T
field theory, we now perform the remaining integrals over T
Xap anin%ij using the saddle point method, which is valid + 9o -, a7
for d>D>1. We assume the saddle point solution has the K2y QJF oq
following form: K X 2T 27
a
XaB:Xa(Saﬁa (8) o(q oD
Qi1 = Gandapdij (1= San), €]

By analyzing the saddle point equations, it was shown that
ro={x%,, (100  there are three phases as folloM$§)]:
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where

1 1 pe 4
Jaa— 0’ (05.— )2

(25

The matrixG associated with the above quadratic form has
seven different types of matrix elemerits4]. The coeffi-

aQ
N

5 cients of thedq,, alone are given by
3 _ 9°f
" 9(80aa) (89aa)
d Bo\ 2
54
-I(-ZO D
"k )
Xf (27T)D(u +2uv+v)=A, (26)
FIG. 1. Mean-field phase diagram fbr>4.
9°f d ~2 dPk
(1) The crumpled phase described B0, andq=0 Gyp=————————=— —(—&) ———5v?
which corresponds to region 4 of Fig. 1. 3(80pp) I(Yaa) 2B\ 2 (2m)
(2) The flat phase described ly#0 and {#0, which —B. (27)

corresponds to regions 2 and 3 of Fig. 1.

(3) The crumpled spin-glass phase described|#0 and  The coefficients of thefq,,(a#b) alone have the forms
=0, which corresponds to region 1 of Fig. 1.

The transition from flat to the crumpled spin-glass phase G _ 9°f
occurs ato= o, where (@P)(@D) ™ 5( S0141) 3( STlap)
1 d° 1 1 d [ d°k
-1_ = __ = 2 2
Also the transition from the flat to the crumpled phase occurs - (28)
at T=T.(o) where 5
G a—f J ( +u )—Q
To(0)=3Teo(1+V1T40D(a+D)Teo 9 (20 P07 5(50,)d(5020  28) (2mP" 7"
(29)
with
5 G 3 9°f . d dPk
g f Ak 1 21 @)™ G50 d(80c) 28] (2m)P”
D) (2m)P kk*
=R. (30)

We note that ouil (o) differs from that of Ref[10].
We now investigate the stability of the above RS solution
to find a mixed phase with a broken replica symmetry. To

The coefficients of the cross terms have the forms

2
examine the question that Eq46)—(18) give a maximum of Ga(ab):a—f
the free energy expression Ed.1), we write 3(00aa) I(Gap)
d
Xa=X71 0Uaa, Uap=07+ lap (a#b) (22 :__( f (27 )D(2U0+U )
wherey andq are the RS saddle point values described by _ (31)
Egs. (15-(18). Then the second order variation of the free o
energy with respect téq,, and 6q,;, gives Py d go\ 11 dP
G o e———————— | — —_—— — 2
2 1 209 9(50a) I 80lne) 2,8( 2 ) (2m)P°
2n8%*f=—D(a+ yD) 2 (80aa)*+ 77 aDdE (8Qap)?
=D. (32
d d°k - 2 There are at most five distinct eigenvalues of the matrix
__f LCIRE)) (23 ot g .
2B) (2m) (1) The first is
80.2=0 by construction. Now we find N=P—-2Q+R (33

(4 Hap=Ubaptv, (24 and corresponds to the eigenvector for which
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Thouless instability line signals the transition from the RS

> 8G=0 forall a. (34  flat phase to the frozen phase with a nonzero average tangent
b vector, but with broken replica symmetry. We call this mixed
(2) The second and the third are phase a flat-glass phase.

Nearo=0g., T=T.(0o,c), the transition is described by
Nos=3[A+(n—1)B+P+2(n-2)Q+3(n—-2)(n-3)R]  theline

+H[A+(n—1)B—P—-2(n—2)Q T—Tx\(o.—0). (38
—1(n-2)(n—3)R]?>+2(n—1) Also near T=0 in the flat phase, the instability line
equivalent to the Almeida-Thouless line is described by
X[2C+(n—2)D]%Y2, (35
Tog?, (39

corresponding to the eigenvectors S )
which implies that the RS flat phase is unstablé a0 to

infinitesimal disorder. Morse, Lubensky, and Grgs} and

% 6Qap=0, but % 80ap7 0. (36 Le Doussal and RadzihovsKit0] also found that flat-glass
phase afl =0, respectively, using the method of tlaeex-
(3) Finally the fourth and the fifth are pansion and the self-consistent calculation in the presence of
the extrinsic curvature disorder. Nelson and Radzihoysky
Ng==3[A=B+P+(n-4)Q—(n-3)R] also predict that the flat phase becomes unstablé=a0.

1 2 The instability of the flat phase dt=0 is also predicted by
*2{[A-B-P-(n-4)Q+(n-3)R] Attal, Chaieb, and Bensimadii2].

+4(n—2)(C—-D)?}12 (37 To conclude, we consider the polymerized membrane

with quenched disorder in the preferred metric. Via the sta-

and correspond to eigenvectors such thgiéq,,#0. These  bility analysis of the mean-field RS solution, we find a new
five eigenvalues are distinct for generalbut forn=0, Eq.  mixed phase called the flat-glass phase. This phase is char-
(35 and Eq.(37) coincide. Hence there are three distinct acterized by frozen local tangents with broken replica sym-
eigenvalues in the limih—0. We find that the eigenvalue metry. The flat-glass phase found in this paper may also
\1 is positive in the flat phase and the crumpled phase whileorrespond to the observed wrinkled phase of partially poly-
it is zero in the crumpled spin-glass phase. For the eigenmerized membrane.
value\,. , we find that\,, remains positive in all regions
but A,_ changes sign from positive to negative asde- We would like to thank Professor Tom C. Lubensky for
creases in the flat phase. In Fig. 1, the line separating flaiseful discussions. This work is supported in part by the
regions 2 and 3 into two regions is the Almeida-ThoulessMinistry of Education through the Basic Science Research
instability line in which\,_ changes the sign. The Almeida- Institute of Seoul National University and in part by KOSEF.
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